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GROWTH LAW OF A SPHERICAL SECOND PHASE AS 

GOVERNED BY SIMULTANEOUS HEAT AND 

MULTI-COMPONENT MASS TRANSFER LIMITATIONS-II 

W. S. CHANG 

Max Pianck lnstitut @r Biophysi~Ii~he Chemie, Karl Friedrich Bonhoeffer Institut, Giittingen, West Germany 

Ahatract-In Part 11, new theoretical treatments of the growth of a slowly moving spherical second phase 
as governed by simultaneous heat and multi-component mass transfer limitations are demonstrated. I‘he 
new method is a direct extension of P-31, It demonstrates that & solution to these complex coupled cases 
can be related to the available uncoupkd cases Thus, treating the so-ca?kd “impurities” as components in 
the surrounding first phase, our results shouid include the growth of a slowly moving spherical second 
phase as governed by simultaneous heat and mass transfer limitations in the presence of impurities as 

asymptotic cases. 

STATEMENT OF THE PROBLEM 

Tw PROBLEM under consideration in Part II is 
as follows: A spherical second phase of size, 
Ro, is produced in a N-component environment, 
i.e. the surrounding first phase, at time t r-z 0. The 
second phase can be a bubble (gas), a droplet 
@quid), or a particle (solid). At time t = 0, the 
entire second phase is assumed to have attained 
a certain proper equilib~~ temperature T, 
i.e. the wet bulb temperature, and remain at this 
temperature throughout the growth process. 
That is, one assumes that throughout the entire 
transient growth process a constant T. exists, 
corresponding to a set of constant surface con- 
centrations, C,,(T,, C,,,,. Cw3, . . . , C,,_ 1) and 
CWi (i = 2,3,. . . , N - I), which must be found 
as part of the problem solution (see Discussion). 
At times t s= 0, the spherical second phase 
starts to grow due to both heat and N-com- 
ponent mass transfer driving forces and move 
slowly in the surrounding first phase. The center 
of the second phase sphere is assumed to move 
at a velocity &‘, relative to stationary coordin- 
ates and the flow field around the second phase 
sphere is assumed to be approximated by the 
external flow of Hadamard [7] and Rybczyn- 

sky [8 1. Since only the second phase with uniform 
constant temperature and concentrations is 
considered, the internal flow within itself is not 
considered. 

The spherical second phase is characterized 
by the following parameters: initial radius, 
R, density, prp viscosity, ,u@ Iatent heat of phase 
transition, L(T,) (< 0 for endothermic; > 0 
for exothermic), and first component saturation 
concentration, C,,,(l: C,, C,, . . . , C,._ 1); the 
surrounding first phase is characterized by the 
following parameters: density, p, viscosity, ~4 
specific heat, C, effective the~~ndu~vity, 
A, and effective Fick’s diffusion coefficients, 
D, (i = 1,2,. . . , N - 1). The first phase is 
initially at a uniform temperature T, and solute 
~on~ntratio~ CWi (i = 1,2,. . . , N - l), while 
the second phase is assumed to have a uniform 
temperature T, and solute concentrations Cdi 
(i= 1,2,..., iV - 1) throughout the growth 
process. Thus, the mass transfer process within 
the second phase is not considered here. 

During the growth process, i.e. t> 0, the 
system is described by the following equations, 

DT z uV2T 
Dt ’ 
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DC; = D.V’C.. 
Dt ’ ’ 

R(t) < r 9 x: (lb) 

with 

K R3 +?(K +1)r3 1 cos 0 
3K+f R 

4(K + 1,‘T 
K R3 - 

4(K + 1)T 1 ’ 
sin t) 

T(r, 8.0) = T, 

C,(r. 8.0) = cpi 
T(cf2.8. t) = T, 

ci(x,e. t) = cmi 
T(R(O, 8, t) = T, 

Ci(R(t), 0, ~1 = Cwi 

sin e de 

X sin 8 de 

0 

R(0) = R, 

GW 

(2bi 

(3a) 

(3b) 

(4a) 

(4b) 

Pa) 

(5b) 

(6) 

where i runs from 1 to N - 1, a SE MpCr) is 
the thermal diffusivity of the surrounding first 
chase. K 3 U,IU the ratio of the viscosities of 

the second and first phases. and the !irst com- 
ponent surface concentration is assumed to 

be L, = CsaJTw, Cw2’ ‘. .1 c,v,_ 1). 
The problem is to find the u priori unknown 

interface temperature T, and concentrations 
C,,(i = 1,2,... , N - 1) and obtain the growth 
law of the second phase, R(r). 

METHOD OF SOLl’TIOrV 

The key to this physically important problem 
is to recognize. that the growth laws obtained 
from either heat or N-component mass transfer 
viewpoints must be identical. Thus, one obtains 
the compatibility conditions from which T, 
and Cwi (i = 1,2,. . . , N - 1) are calculated (see 
below). The exact solution of this very compli- 
cated problem is still yet to be found. However. 
for certain asymptotic extremes, various kinds 
of valid approximations are available. 

(i) Boundaq7 la.ver approximation .for the snxrll 
density ratio pd/p case 

With the small density ratio 

1 + PdIP (7) 

and the thin boundary layer assumptions, i.e. 

S2C. 2ac 
-.L$__.! 

dr2 I dr 

@a) 

(Yb) 

a27- I c’ y--F,>------- (8c) 
er’ r2 sin e de 

3% -- 
Sr2 

1 i! sineC’ 

r2 sin 8 de ( 1 (‘8 (84 

and 

V O<,- r - R(t) 

R 
E-41 

R(t) 

the governing equations (l)-(6) are simplified 
into the following form [9], 

BT -- 
& 
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3 
at 

I u “.sineaCi 
+ 2(1 + K )’ R 

D,“‘i 
de- 13 

(94 
with 

and 

(9b) 
From 

A(t) = A,(t) = 3(1u$!;& 
h 

B(t) = B,(t) f 
d In R,(t) 

d t . 

the ith component mass transfer 

(18) 

(19) 

view- 
(12b), T(yl8,O) = T, (lOa) point, i.e. equations (9b). (lob), (lib). 

C,(.I’, 0,O) = cai 
(13b) and (14), the concentration variable 

(lob) C,(y, 0, r) satisfies the same boundary value 

T(rc,& rl = T, (1 la) problem as in [9]. Thus, one gets [9] 

Ci(c0,8. r) = Cmi (1 lb) Nag . 
(20) 

T(O.O. t) = T, (12ar 
R,,,(t) = R, - 2 

where 

CJO. 0. t) = cwi (12b) 
NaLi =“.Pmi z -. I’ ‘wi - ‘,i 

pd ‘di - ‘wi 

(W 
pd 

pdft =A- '. 
-t(TW)‘2 

sin 0 d 8 (13a) and G,ft) is given by G(r) (equation (17)) with 

0 
Y’O 

A(r) = A,,(r) = U,(R,,(t) 

Qg = -3L.1. 
3(1 + K jR,,(t) 

(22) 

Cdi - cwi 2 
sin 8 d 8 (13b) and 

d 1x1 &i(t) 

R(0) = R,. (14) 
B(t) = B,,(t) 5 --;r (23) 

From the heat transfer viewpoint, i.e. equations 
(9a), (lOa), (lla). (12a), (13a) and (14), the tem- The uniqueness of the growth law of the second 

perature variable T(y. 8, t) satisfies the same phase. i.e. R,(t) = Rm,(t) = R&t) = . . . = 

boundary value problem as in [9]. Thus, one RmN- 1 (t) = R(t), gives the following combti- 

gets II91 
bility conditions: 

R,(t) = R, - %f.i 
JO 

E *Gh(t) (15) 
2 IL 

Najl . d’a = Ndm, . d/D1 

where 
P C,(T, - Tw) 

= Nas,, . ,/D, 

NaisE.qm-. 
pd pd UT,) 

(16) =- - - 

and G,(t) is given by G(t) = N&g_ 1 . JDN- l (24) 

1 - (tan2 e/2). exp[$ A(s) ds] (17) 
+ 

; + 4B(<) 
1 + (tan’ O/2). exp[3j A(s) ds] 

T 
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Of 

q.Jx = B$, !D ‘V 1 

= Q. \iiD2 

=- - - 

= BB,lv_l. /D v N-l’ (25) 

The values of T, and Cwi (i = 1,2,....N - 1) 
must be properly chosen so that the compati- 
bility conditions, equation (25), are satisfied. 
Then, the required growth law of the second 
phase is given by . G(t) (264 

= R, - F. ,,f+). G(t) (26b) 

where G(t) is given by equation (17) with 

A(t) = 
U,(R(r)) 

3(1 + K)R(t) 
(27) 

and 

It is noteworthy that the parameters charac- 
terizing the velocity flow field in the surrounding 
lirst phase do not appear in the compatibility 
conditions, equation (25), at all. Equation (25) 
can be shown to be identical to equation (16) 
of Part I, if one brings in the same asymptotic 
approximation in Part I (see [2] for the case 
of N = 2). In other words, the fact that the 
second phase is moving slowly, does not come 
into play at all as far as calculating the a priori 
unknown second phase sphere temperature 
T, and surface concentrations Cwi (i = 1.2, , 
N - 1) is concerned. Another noteworthy result 
is that the spherical second phase initial size 
R, does not appear in the compatibility condi- 
tions, equation (25). To fm the ideas, we will 
consider the following physically important 
asymptotic cases. 

Case 1: N = 2 (2% 
When N = 2, i.e. two-component environ- 

ment, the main results obtained in [2] are 
recovered, as expected. 

Case2: N = 3 (30) 
When N = 3, i.e. three-component environ- 

ment, equation (25) degenerates into the follow- 
ing form 

e.Ga = B;, .viD, 

= P,, . V’D,. (311 

Owing to CSat1(7: C,) relation, equation (31) 
determines unique values for T,, Cw, = Csat, 
(T,, C,,,,), and C,,. Then. the required growth 
law of the second phase is given by either 
equation (26a) or (26b). Treating the first com- 
ponent as the main solute, the second component 
as the impurity, and the third component as the 
solvent, this is the case when the growth of the 
slowly moving spherical second phase is 
governed by simultaneous heat and mass trans- 
fer limitations in the presence of an impurity. 

(ii) Boundary layer approximation for the large 
density ratio pd/p case 

With the large density ratio 

1 G P*lP (32i 

and the thin boundary layer assumptions, i.e. 

ar*zar 

dr2 
-- 
r dr 

(33a) 

(3%) 

Z2T 1 i: l?T 
->>---- 
Jr2 r2 sin 8 ae ( ) 

sin 0---- 
de 

(334 

d2C. 
A+ ~- 
dr2 

(33d) 

and 

Y r = R(t) < 1 
O<x=R(f) < (33e) 

the governing equations (l)--(6) are simplified 
into the following form [lo, 1 l] 
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aT 
l *%d3 llT 

1 
dt+---.--- l+rc R *F + 2(1*$ K) 

PW 

W, @to) = T, 

citY, ‘3 ‘1 = ‘wj 

T(oo,$,t) = T, 

c,(co,e,t) = C& 

T(O,&t) = T, 

c~o,~,t) = cwi 

From the ith component mass transfer view- 
point, i.e. equations (34b), (35b), f366), f37b), f38b) 
and (39), the concentration variable C,(y, 6, tf 
satisfies the same boundary value problem as in 
[lo] and [ll]. Thus, one gets [lo, 113 

WI 

WI 

(3W 

(3W 

(3W 

W) 

R,Jt)= R, - WI 

where H,i(t) is given by H(t) (equation (41)) 
with 

. sin 6 d 8 (38a) 

R(0) = R, (39) 

From the heat transfer viewpoint, i.e. equations 
(34a), (35a), (36a), (37a)l(38a) and (39), the tem- 
perature variable T(y, 8, t) satisfies the same 
boundary value problem as in [lo] and [ 113. 
Thus, one gets [lo, 1 l] 

R&r) = R, - .Ntlf.H&) (40) 

where H,,(t) is given by H(t) 

sin3 I$J d3dz 

with 

f V. $1 
1 - (tan2 e/21. exp [ - y(t). t-j 

E iT(tan2 e/2). exp [ - r(t) . t] (42) 

and 

u ,(R,ttN 
tit) = Y&f = (f + K )Rh(t) (43) 

The uniqueness of the growth law of the second 
phase, i.e. R,,(t) = R,i(t) = R,Jt) = Rnr3(t) = 
..* = R mN_ ,(tf = R(t), gives the following corn- 
patibility conditions 

KJa =BBm, . jul 

= Pm2 0 jD, 

-_- I_ - 

= &N-l .jD,_,. WI 
The values of T, and C, (i = 1,2,. . . , N - 1) 
must be properly chosen so that the compati- 
bility conditions, equation (46), are satisfied. 
Then, the required growth law of the second 
phase is given by 

R(t) = R, - 

where H(t) is given by equation (41) with 

(48) 
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It is noteworthy that both the parameters 
characterizing the velocjty flow field in the 
surrounding first phase and the spherical second 
phase initia1 size R, do not appear in the com- 
patibility conditions, equation (46). Equation 
(46) is identical to equation (25) and can also 
be shown identical to equation (16) of Part I, 
if one brings in the same asymptotic approxima- 
tion, in part 1. Thus, within the validity of the 
approximation, the fact that the second phase is 
moving dowly, does not come into play at all as 
far as calculating the a priori unknown second 
phase temperature T, and surface concentrations 
Cwi(i=1.2,..., N - 1) is concerned. To fix the 
ideas, we will consider the following physically 
important asymptotic cases. 

Casel:N = 2 (49) 
When N = 2, i.e. two-component environ- 

ment, the main results obtained in [2] are 
recovered, as expected. 

Cuse2:N = 3 (50) 
When N = 3, i.e. three-component environ- 

ment, equation (46) degenerates into the follow- 
ing form 

(51) 

Owing to C,,,,(?: C,) relation, equation (51) 
determines unique values for Tw, Cw, = CSa,l 

tTw, CwJ9 and Cw,. Then, the required growth 
law of the second phase is given by either 
equation (47af or (47b). Treating the lirst com- 
ponent as the main solute, the second com- 
ponent as the impurity, and the third component 
as the solvent, this is the case when the growth 
of the slowly moving spherical second phase is 
governed by simultaneous heat and mass trans- 
fer limitations in the presence of an impurity. 

DISCUSSION 

First of all, it is assumed that solute and heat 
diffusions in the surrounding first phase are 
adequately described by unsteady state con- 
vective diffusion equations with effectively con- 
stant Fick’s diffusion coefficients and an effec- 

tively constant thermoconductivity. It is assumed 
that all the parameters characterizing second 
and first phases are effectively constant and there 
exists a local equilibrium relationship. CsatI 
(‘I’,, C,,,,, C,,, . . . , C,,_ 1) at P = R(t) through- 
out the growth process. The compatibility 
conditions, equation (25) (for small density 
ratio p,/p) or equation (46) (for large density 
ratio p~‘p), are the necessary and sufficient 
conditions for the existence of the stated con- 
stant interface conditions solution, i.e. it 
guarantees the uniqueness of the growth law 
of the second phase, R(t). Thus. the basic 
assumption of strictly constant Tw and Cwi (i = 1. 
3 _.. . . , N - 1) is automatically justified u 
posteriori for the second phase problems of the 
type considered here. Physically, the necessary 
and sufficient compatibility conditions mean 
that the second phase can grow if one maintains 
7’(x;. t) = T, and C,(cc. t) = Cni (i = 1. 2.. . 
N - 1) throughout the growth process. 

CONCLUSIOYS 

In Part Ii, two valid approximate treatments 
of the growth of a slowly moving spherical 
second phase in the presence of simultaneous 
heat and N-component mass transfer limitations 
have been demonstrated. In general. a trial-and- 
error method must first be used to solve the 
compatibility conditions, equation (25) or (46), 
to obtain the u priori unknown second phase 
temperature and surface concentrations. Having 
thusdetermined Twand Cwi(i = 1,2, . . . . N - 11 
the growth law of the second phase is then 
readily obtained. Treating the so-called 
“impurities” as components in the surrounding 
first phase. our results should include the 
growth of a slowly moving spherical second 
phase as giverned by simultaneous heat and mass 
transfer limitations in the presence of the 
impurities as asymptotic cases. 
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LOI DE CROISSANCE DUNE SECONDE PHASE SPHERIQUE GOUVERNEE PAR 
DES CONDITIONS DE TRANSFERTS SIMULTANES DE CHALEUR ET DE MASSE-II 

Resms&-On considere dans cette deuxibme partie, un nouveau traitement theorique de la croissance 
d’une seeonde phase sphtrique en deplticctncnt lent, loi gouvemee par des limitations dc transferts 
simultants de chaleur et de masse. La nouvelle methode est une extension direete de celle des &f&noes 

(l-3). 11 est dtmontri que la solution de ees cas couples complexes peut Etre relic a da eas non couples 
connus. Ainsi, traitant les “impuretts” comme des composants dans la premiere phase environnante, les 
rtsultats peuvent inclure, comme des cas asymptotiques, la eroissanee d’une seoonde phase spbcrique en 
mouvement lent gouvemCc par des limitations de transferts simultants de chaleur et de masse en presence 

des impure&. 

WACHSTUMSGESETZ EINER KUGELFdRMIGEN SEKUNDiiRPHASE FUR 
GLEICHZEITIGEN WARME- UND VIEL-KOMPONENTEN-STOFFtiBERG:\YG-11 

Zweamm&amomg-Im Teil II werdar neue tbeoretisebe Betraobttmgea iIber das W&stunt einer dumb 
gleicbxeitigcn Wbrmegbergang und Mebrkomponentenstofbergaag begrenaen latrgaam bewegten 
kugeIf&migm SektmcMrphase angeatelh Die neue Methode iat eine uamittelhate Erweiterung van [l-3]. 
Sie zeigt, dam die L&sung dieser komplex tlherlagerten FbIle auf vorhandene tmgekoppelte FiUle ilber- 
tragen werdem kann. lndem man diem sogenannten “Unreinheiten” als Komponenten in der umgebeslen 
ersten Phase behandelt, solltcn unsere Beziehungen das Waohstum eina dumb gleiebaeitigen W&me- 
tmd StofFtlbergang begrenzten langsam bewegte kugeIf&migar Sekundiirphase in Anwesenbeit der 

Unreinbeitm als asymptotisebe F&Be entbalten. 

BAHGH PvCTh C@EPSSECHO%i BTOPOii QA3bI IIPH OJIHOEPEMEHHOM 
I-IEPEHOCE TEIXIA II MHOI’OKOMIIOHEHTOH MACCM-II 

~o%a@sui-E 9acTu II nonanarra riouafl TeopeTsrqecKaa Tparrronna pocla ve~Jrertri0 
~sumprrtelca c#iepusecuofl ~T0p0fl @aabr npu coBMecTHoM nepertoce Tenza n stHorOKonrno- 
AeKTHoi4 Maccbtro HOB& MeTon RBjIrreTCR np~~bt~ npo~on?iceHneM MeTO&a, nanomertrioro B 

[l-3]. OH nonaabtnaeT, YTO ~nri peruetirra Tanrrx crrorrtribtx aafias saassrocsnaamioro Tenno 
MaccooGMena M~HCH~ scnonbaoBaTb uaBecTHbre anfi npocwx aaxwi pemeaws. TaKHM o6paaonr, 

paccnraTpuBan TaK HaablBaeMbIe cnpuntecns B KaSecTBe KoMnoHeKT oKpyn;aro~eti nx nepeott 
@aabl, HeO6XOxUMO BKAtOWTb KaK aCKMnTOT&tWCKHti CJtyWfi p(FCT MexneHHO xBKmymt!flCR 

c@epKsecKoti ~~0p0tl #aabr. onpeAenrreKht8 aaKoH0MepHocTrrKrr o~KoBpeMeHHor0 Tenno-K 
KacconepeHoca npK Hanuwu npKKeceB, 


